Bladder Cancer, 2006 Overview and Current Treatment

Don Lamm, MD

Bladder Cancer, Genitourinary Oncology, Phoenix Clinical Professor, University of Arizona,

BCGOncology.com

September 16, 2006

Bladder Cancer Statistics, 2006

- New Cases: 61,460
 - 44,690 Men 16,730 Women
- 3:1 Men to Women
 - 50% over age 73
- Estimated Deaths: 13,060
 - Men: 8,990 Women: 4,070
- Incidence/Mortality: 20.8%
 - Men: 20% Women: 24%
- Prevalence: More than 500,000 in US

Bladder Cancer Etiology

- Initial link aniline dyes made in 1895
- Industrial exposure rubber & textiles
- Aromatic amines 30 x risk
- Tobacco 3 x increased risk 60% of cases
- Treatment Complication 9 x risk with cyclophosphamide or ifosfamide - 4 x RT
- Schistosoma hematobium, infection, foreign body: squamous cell carcinoma

Diet and Bladder Cancer Risk: A Meta Analysis

- 40% increased risk for diets low in fruit: (HR 1.40, 95%: 1.08-1.83)
- 16% increased risk for diets low in vegetables: (HR 1.16, 95%: 1.01-1.34)
- 37% increased risk for diets high in fat (HR 1.37, 95%: 1.16-1.83)
- No increased risk for increased meat or reduced Vitamin A

Steinmaus CM:Am J Epidemiol. 2000 151:693-702. Diet and bladder cancer: a meta-analysis of six dietary variables.

Bladder Cancer Pathology

Transitional Cell 94% Squamous Cell 5% Adenocarcinoma <1% Rhabdomyosarcoma <1%

Bladder Cancer Signs and Symptoms

- 85% present with gross or microscopic hematuria
 - Bleeding is typically intermittent and not related to grade/stage
- 20% have irritative voiding symptoms burning, frequency
 - More commonly associated with CIS and high grade tumors

Diagnosis

- Cystoscopy is key
 - Papillary tumors are easily seen
 - High grade, solid, flat or in situ tumors may not be seen
- Urinary Cytology
 - 80% + sensitivity in high grade tumors with 95% specificity
 - Sensitivity improved with FISH
- IVP, CT scan for upper tract evaluation

Bladder Cancer: Natural History

- About 70% present with resectable, superficial tumors
 - but up to 88% recur within 15 years
- Patients can and should be monitored with cystoscopic examination at regular intervals to directly assess disease status
- Accessible for disease assessment
 - Topical and systemic treatment

BCG

1800-1900

• Majority of adults infected with tuberculosis - 25% mortality

1884

• Kock demonstrates M. tuberculosis causes TB

1894

Calmette & Guerin begin race for vaccine in Lille, France at Institute Pasteur

1904

Nocard isolates virulent bovine tuberculosis strain that is to become BCG

1921

- 13 years and 231 passages later- avirulence
- July given to newborn infant born to mother with active TB

1929

Pearl in autopsy studies notes protective effect of TB against cancer

1935

• Holmgren in Sweden is first to treat cancer in humans with some success in 28 pts.

1936

• Rosenthal - BCG stimulates reticuloendothelial system

1959

 Old/Clarke (US) and Halpern (France) - BCG inhibits experimental tumors in animals

BCG Past Lubeck, Germany BCG Tragedy

1930

- 70 infants died in Lubeck, Germany
- BCG implicated in deaths
- Doctors accused;
 later proven to be cross contamination with wild tuberculosis

BCG Past

1972

- Rosenthal significant reduction in leukemia mortality in BCG vaccinated babies
- 1970's
 - multiple claims of success, but controlled trials fail to confirm efficacy in advanced disease, but...
- 1976
 - Morton- 91% CR with BCG injected melanoma nodules

Intralesional BCG Cell Wall Injections

Controls – Oil Injection N = 16		Sensitized N = 10	Unsensitized N = 9
A·Β	Α·Β	A·Β	A·Β
$1 (\mathbf{\hat{-}}) (\mathbf{\hat{-}})$	$(\cdot \cdot)$	$(\mathbf{\dot{\cdot}})$	$(\cdot \cdot) $
2.	$(\mathbf{i})(\mathbf{e})$	$(\overline{\cdot}) (\overline{\cdot})$	(\mathbf{r})
3 (*) (==)	$(\cdot) \bigcirc$	$(\cdot, \cdot)(\cdot, \cdot)$	$(\mathbf{\cdot})$
430	$\bigcirc \bigcirc \bigcirc \bigcirc$	$(\overline{},\overline{})(\overline{},\overline{})$	$(\black) (\black $
5.	$(\mathbf{\cdot}) \bigcirc (\mathbf{\cdot})$		(\bullet, \bullet)
6.	$(\overline{\cdot})(\overline{\cdot})$	(•) (••••)	()()
7 🐨) 🖓	$(-\cdot)(-\cdot)$	$(\cdot \cdot)(\cdot \cdot)$	(1)
8 -) (*•)		$(\mathbf{\cdot})(\mathbf{\cdot})$	$(\bullet) \bigcirc $
9		$(\overline{\cdot}, \overline{)}(\overline{\bullet}, \overline{\bullet})$	$(\mathbf{e}) (\mathbf{e})$
10		$\left(\begin{array}{c}\bullet\end{array}\right)\left(\begin{array}{c}\bullet\\\bullet\\\bullet\end{array}\right)\left(\begin{array}{c}\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\$	

BCG in Bladder Cancer

1976

 Morales- 12 fold reduction in recurrence in nine bladder cancer patients

1977

- Lamm reports success in controlled animal studies of bladder cancer
- 1980
- Lamm reports successful randomized clinical trial 80's-90's
 - Multiple comparison studies show BCG to be superior to chemotherapy

Lamm, DL: J Urol 124(1): 38-40, 1980

Tumor Recurrence

Disease Free Interval for Patients Without CIS and With Prior Chemotherapy – Protocol 8216

Southwest Oncology Group – Disease Free Interval for Patients Without CIS – Protocol 8216

Progress in Bladder Cancer

- Incidence up from
 - 14.6/100,000 in 1973 to 16.5 in 1997 (adjusted to 1970 population)
- Mortality down: 4.2/100,000 in 1973 to 3.2 in 1997
 - 5 yr survival 53% in 1950, 82% in 1997
- One of only 5 cancers with *increased* incidence and <u>reduced</u> mortality

Testis	- 5.1		
Bladder	- 1.3		
Breast	3		
Ovary	5		
Thyroid	- 1.1		

Risk Factors in Superficial Bladder Cancer

Recurrence

- 51% for solitary
- 91% multiple
- As low as 20% @ 5 years if 3 mo. cysto clear

Progression

- 4% for Ta, 30% for T1
- 2% for G1,Ta
- 48% for G3,T1

Mortality

- 6% G1, 21% G3
- CIS: 52% progression T2 or higher if untreated
- T2(+): 45% 5yr survival with cystectomy

Risk Groups Improve Treatment Selection

- Low Risk: G1,Ta solitary tumor with no recurrence at 3 months
- Intermediate Risk: Multiple or recurrent G1,Ta; G2,Ta
- High Risk: Any G3, Lamina propria invasion (T1), CIS, or 3 month recurrence

Mechanisms of Tumor Recurrence

- Implantation at the time of tumor resection
- Incomplete resection
- Stimulation by growth factors induced by surgery and the healing process
- Growth of transformed cells or CIS
- Continued induction and promotion due to continued carcinogen exposure

Principles of Intravesical Chemotherapy

- Direct contact with cancer cells is required
- Tumor kill is proportional to <u>duration</u> of exposure and drug <u>concentration</u>
- Optimal response occurs with treatment within 6 hours of tumor resection
- Significant improvement with continued treatment or maintenance not reported
- Low-grade tumors respond best

Thiotepa: Controlled Studies

Author	Ν	Control	Thio	%Δ	Ρ
Burnand	51	97%	58%	39%	0.001*
Byar	86	60%	47%	13%	0.016
Nocks	42	64%	65%	-1%	NS
Asahi	134	41%	40%	1%	NS
Schulman	209	69%	59%	10%	NS
Koontz	93	66%	39%	27%	0.02
Zincke	58	71%	30%	41%	0.002*
Prout	90	76%	64%	12%	0.05
MRC	367	37%	40%	-3%	NS
Netto	34	80%	43%	37%	NS
Hirao	93	46%	15%	31%	.002
Total	1257	60.6%	44%	16.6%	

Single Immediate Post op Chemotherapy Reduces Tumor Recurrence in Ta,T1 TCC: Meta analysis of Randomized Trials

- 7 trials, 1476 patients, median follow 3.4 years (max 14.5)
- Recurrence: reduced from 362/748 (48.4%) with TUR alone to 267/728 (36.7%) with one postoperative dose epirubicin, MMC, thiotepa or pirarubicin
- 39% reduction in the odds of recurrence with chemotherapy (OR = 0.61, p < 0.0001)
- Both single (OR = 0.61) and multiple tumors (OR = 0.44) benefited
- 65.2% with multiple tumors recurred vs. 35.8% with single tumors
- One instillation may be insufficient with multiple tumors

Sylvester R: J Urol abstr. 270, 2004

Mitomycin C: Controlled Studies

Author	Ν	С	MMC	% ∆	Ρ
Huland	79	52%	10%	42%	0.01
Niijima	278	62%	57%	5%	NS
Kim	43	82%	81%	1%	NS
Tolley	452	60%	41%	19%	0.0002
Krege	234	46%	27%	19%	0.04
Akaza	298	33%	24%	9%	NS
Total:	1384	51.5%	37.6%	13.9%	

Summary of Controlled Chemotherapy Trials

Agent	Series/N	%Δ	(range)	P<0.05
Thiotepa	1257/11	16.6%	(-3-41)	6/11
Doxorubicin	1751/8	16.2%	(5-39)	4/8
Mitomycin	1384/6	13.9%	(1-42)	3/6
Ethoglucid	226/1	20.0%	(NA)	1/1
Epirubicin	985/6	19.6%	(9-26)	3/6
Total:	2297/32	17%	(-3-42)	17/32

Controlled BCG Trials

Author	No.	NoRx	BCG	Ben.	Ρ
Lamm '85	57	52%	20%	32%	<.001
Herr '85	86	95%	42%	53%	<.001
Yamamoto '90	44	67%	17%	50%	<.0.05
Pagano '91	133	83%	26%	57%	<.001
Mekelos '93	94	59%	32%	27%	<0.02
Krege '96	224	48%	29%	24%	<0.05
Kolodziej '02	155	55%	19%	36%	<.001
Total:	798	66%	26%	40%	
Meta-Analysis of BCG vs. TUR Alone Shelly et al. Cochrane Group BJU Int 2001, 88:209

- 26 publications reviewed
- 6 acceptable trials with 585 patients
- Mean log hazard ratio for recurrence -.83, P<0.001
- 56% reduction in hazard attributable to BCG
- Manageable toxicity: cystitis 67%, hematuria 23%, fever 25%, frequency 71%
- Conclusion: BCG provides significantly better prophylaxis of tumor recurrence in Ta, T1 TCC

Randomized BCG vs. Chemotherapy Studies

Thiotepa								
BCG	Rec	Chemo	Adv.	P value	Author			
0	VS	47%	+47	<.01	Brosman '82			
7%	VS	43%	+35	<.01	Netto '83			
13%	VS	36%	+26	<0.05	Martinez '90			
Doxorubicin								
53%	VS	78%	+21	<.02	Lamm '91			
13%	VS	43%	+30	<.01	Martinez '90			
24%	VS	42%	+18	<.05	Tanaka '94			
Epirubicin								
33%	VS	47%	+14	<.0001	Vd Meijden '01			

Randomized BCG vs. MMC Studies

BCG	Rec.	MMC	∆ BDG	P Value	Author/Year
4%	VS	34%	+30	<.01*	Pagano '87
28%	VS	62%	+34	<.001*	Finnblad '89
61%	VS	80%	+19	NS	Lee '92
47%	VS	42%	-5	NS	Witjes '94
64%	VS	42%	-21		Vegt '95
46%	VS	43%	-3	NS	Vegt '95
43%	VS	56%	+9	<.01*	SWOG '96
51%	VS	66%	+15	<.01*	Malmstyr. '96
24%	VS	29%	+5	NS	Krege '96
38%	VS	62%	+24	<.001*	Ayed '98
32%	VS	54%	+22	<.001*	Milan '00
14%	VS	26%	+13	<.01	Nogueira '01

36.7% of 781 vs 53.8% of 771 (+17%) in maintenance BCG studies. 6/6 maintenance BCG studies significant vs 1/5 non-maint.

BCG Versus Mitomycin-C (SWOG 8795)

Intravesical BCG is superior to mitomycin C in reducing tumour recurrence in high-risk superficial bladder cancer: a meta-analysis of randomized trials. Shelley et al. (2004) BJU Int. 93:485-90

- "This is the highest level of evidence-based medicine and the results presented here suggest that intravesical BCG is superior to mitomcycin C."
- "A subgroup analysis of 3 trials that included only high-risk Ta and T1 patients indicated no heterogeneity (P-0.25) and a LHR for recurrence of -0.371 (0.012). With MMC used as the control in the meta-analysis, a negative ratio is in favour of BCG and, in this case, was highly significant (P<0.001)."

Optimal Intravesical Chemotherapy

- Immediate postoperative treatment is best, confirmed by meta-analysis (Sylvester, 2004)
- Concentration is more important than dose: 40mg MMC/20ml water, 30mg thiotepa/15cc, 50mg Adra/25cc all for 30 minutes within 6 hours post op
- MMC: 40mg/20ml, dehydration, ultrasound confirmed bladder drainage and 1.3g bicarb. HS, AM and at time of instillation doubles protection from recurrence (Au, JNCI, 2001)

BCG Versus Doxorubicin: Time Without Treatment Failure

Lamm DL: N Engl J Med. 1991;325:1205

5 Year Tumor Recurrence Curves With Chemotherapy vs Control

BCG vs Chemo For CIS: Meta-Analysis Sylvester: J Urol. 174:86, 2005

- 9 randomized trials including 700 pts. with CIS
- Chemo: MMC, Epi, Adria, or sequential MMC/Adria
- BCG: 68% CR vs Chemo: CR 52%; P=0.0002
- 3.6 year follow: 47% BCG vs 26% Chemo NED
- 26% reduction in disease progression with BCG
- "BCG reduces the risk of short and long-term treatment failure compared with chemotherapy... agent of choice in the treatment of CIS."

Principles of BCG Immunotherapy

- *Minimize* tumor burden (10³ cells, mouse)
- Juxtapose BCG and tumor cells
- Use sufficient but not excess BCG (Dose-Response curve is Bell-shaped). Excess BCG (eg repeated 6 week courses) *suppresses* the immune response
- Initial immune stimulation peaks at 6 weeks, subsequently at 3 weeks
- Immune stimulation wanes with time
- TH1 immune competent host & antigenic tumor

Dose-Response Curve to BCG (in mice)

BCG colony forming units

Lamm DL, et al. J Urol. 1982; 128: 1104-1108

Low-Dose Versus High-Dose BCG

Time since start of treatment, months

* Pasteur strain, Pagano F, et al. Eur Urol. 1995; 27 (suppl 1): 19-22.

Why Maintenance BCG?

- The risk of tumor recurrence is lifelong
- The immune stimulation and protection from tumor recurrence induced by BCG wanes with time

Three Week Maintenance BCG SWOG 8795: 385 Evaluable, NED

p < 0.0001 p = 0.04

Lamm DL et al, J Urol 163, 1124, 2000

Figure 1

Results

- With 10 year follow-up, recurrence reduced from 52% to 25% (P<0.0001)
- Recurrence-free survival increased from 30% to 48% (P<0.0001)
- Worsening-free survival increased from 52% to 60% (P<0.04)
- Overall survival increased from 51.5% to 57.8% (P=0.08, NS)

BCG Maintenance: Not Created Equal

Progression All Studies With Maintenance

Study Publ Year	Events /	Patients	Stati	stics						1-OR
Author and Group	No BCG	BCG	(O-E)	Var.		(BCG		No BCG)		% ± SD
1991 Pagano (Padova)	11 / 63	3 / 70	-4.4	3.1			_			
1987 Badalament (MSKC	C) 6 / 46	6 / 47	-0.1	2.6						
2000 Lamm (SW8507)	102 / 192	87 / 192	-7.5	24.1						
2001 Palou	2 / 61	3 / 65	0.4	1.2						
1996 Rintala (Finnbl 2)	3 / 90	3 / 92	0	1.5						
1995 Rintala (Finnbl 2)	4 / 40	2 / 28	-0.5	1.3						
1995 Lamm (SW8795)	24 / 186	15 / 191	-4.8	8.8						
1999 Malmstrom (Sw-N)	22 / 125	15 / 125	-3.5	7.9						
2001 Nogueira (CUETO)	8 / 127	10 / 247	-1.9	3.9						
1991 Rintala (Finnbl 1)	2 / 58	3 / 51	0.7	1.2						
2001 de Reijke (EORTC)	18 / 84	10 / 84	-4	5.9						
2001 vd Meijden (EORTC) 19 / 279	24 / 558	-4.7	9.1						
1982 Brosman (UCLA)	0 / 22	0 / 27	0	0						
1990 Martinez-Pineiro	4 / 109	1 / 67	-0.9	1.2						
1999 Witjes (Eur Bropir)	2 / 25	1 / 28	-0.6	0.7						
1997 Jimenez-Cruz	7 / 61	6 / 61	-0.5	2.9						
1994 Kalbe	2 / 35	0 / 32	-1	0.5						
1991 Kalbe	2 / 17	0 / 21	-1.1	0.5						
1993 Melekos (Patras)	7 / 99	2 / 62	-1.5	2						
1988 Ibrahiem (Egypt)	12 / 30	5 / 17	-1.1	2.6						
Total	257 / 1749	196 / 2065	-36.8	80.9		-				37% ± 9
	(14.7 %)	(9.5 %)								reduction
					0.0	0.5	1.0	1.5	2.0	
Test for heterogeneity						BCG		No BCG		
χ ² =9.73, df=18: p=0.9						better		better		
						Treatme	ent effect: p	0=0.00004		

Kaplan Meier Estimate of 5 Year Tumor Free Rate In Patients Receiving Vitamin Supplement and BCG Therapy For Bladder Carcinoma

Natural and Chemotherapy Treated History of T1, G3, TCC

Author	No.	Progr.	Follow-up
Heney '83	27	48%	36 mo.
Rutt ' 85	430	31%	60 mo.
Malmstrom '87	7	43%	60 mo.
Jakse '87	31	33%	60 mo.
Kaubisch '91	18	50%	36 mo.
Mulders '94	48	27%	48 mo.
Klan '95	17	65%	72 mo.
Holmang '97	58	48%	84 mo.
Total:	519	33%	

BCG in Grade 3, Stage T1 TCC

Author	No.	Prog. %	Followup	Author	No.	Prog %	Follow-up
Boccon - Gibod '89	47	12	-	Vicente '96	95	11	46
Dal Bo '90	24	25	22	Lebret '98	35	12	45
Samodi '91	62	0	46	Baniel '98	78	8	56
Cookson '92	86	7	59	Klan '98	109	13	78
Eure '92	30*	7	39	Gohji '99	25	4	63
Pfister '95	26	27	54	Brake '00	44	16	43
Hurle '96	51	14	33	Pansadoro '02	86	14	71
Zhang '96	23	35	45	Total	071	10	
Sereretta '96	50	12	52	TOtal	071	12	

Clinical v. Pathologic Staging Stage T1 TCC

Cystectomy in **101** Clinical State T1 patients Final Pathologic States

- 70 patients stage pT1 or less:
 - pTO: 19
 - pTIS: 4
 - pTa: 0
 - pT1: **47**

- **31** patients pT2 or greater:
 - pT2: 10
 - pT3a: 2
 - pT3b: 8
 - pT4: 11

Amling, J. Urol, 1991

Understaging of High-Risk Superficial Bladder Cancer

Stud	y	% Understaged			
Pagano	(1991)	35%			
Amling	(1994)	37%			
Soloway	(1994)	36%			
Freeman	(1995)	34%			
Ghoneim	(1997)	62%			
Herr	(1999)	49%			
Dutta	(2001)	64%			
Over	rall Average:	45%			

Cystectomy is The Gold Standard for Invasive TCC How Good is Gold?

- Pelvic recurrence: 5-30%
- Overall 5 yr survival: 42-60%
- Morbidity and mortality (0.3-6%)

Current Survival with Cystectomy

Current Survival with Cystectomy Dalbagni: J Urol, 165:1111-1116, 2001

TUR for Muscle Invasive TCC

- Barnes: 40% 5 yr survival when confined to bladder
- Solsona: 59 pts, 75% 10 yr DFS, 80% bladder preservation

Partial Cystectomy for Muscle Invasive Bladder Cancer

- 37 patients, 1982-2003 followed for 73 months (6-217).
- 51% had no tumor recurrence.
- 9 (24%) superficial and 9 (24%) invasive or advanced recurrence.
- 6 (16%) died of bladder cancer
- 5 year overall and DSS: 67% and 87%

Kassouf W: J Urol. 2006;175:2058-62 . MD Anderson

463 Muscle-Invasive TCC Patients Herr: J Clin Oncol, 19: 89-93, 2001.

TUR vs. Cystectomy for T2 \Rightarrow T0 TCC

Herr: J Clin Oncol, 19: 89-93, 2001.

151 non-randomized pts, 99 TUR only, 52 immediate cystectomy

Superficial Recurrence: No Effect on Survival Herr: J Clin Oncol, 19:89-93, 2001.

TUR and H	BCC	in Invas	sive TCC
Author/yr	Ν	%NED	Follow
Netto '84	10	60%	32 mo
Lamm '84	17	41%	24 mo
Pansadoro '87	41	24%	18 mo
Rosenbaum '96	13	15%	60+mo
Volkmer '03	22	46%	60 mo*

*69% 5yr survival, P0 2nd TUR

Neo Adjuvant Chemotherapy: Meta Analysis

- 10 randomized clinical trials, 2688 patients
- 13% reduction in bladder cancer death (hazard ratio 0.87, P=0.016)
- 5 yr overall survival increased from 45 to 50%
- No significant benefit for platinum alone

Lancet. 2003;361(9373):1927-34.

Adjuvant Chemotherapy Post Cystectomy or RT: Meta- Analysis

- 491 patients in 6 randomized trials
- 25% reduction in mortality (HR 0.75; 95%: 0.061-0.09, P=0.019)
- Overall **3 yr** survival increased from 45% to 54% with adjuvant chemotherapy

ABC Meta-analysis Collaboration: Cochrane Database of Systematic Reviews. 2006, Issue 2 Surgery versus Radiation Therapy For Muscle Invasive TCC: Meta-Analysis

- Only 3 quality randomized trials; 493 patients
- 3 yr survival increased from 28% with radiation to 45% with surgery
- 5 yr survival increased from 20% to 36% (OR 2.17, 95% 1.39-3.38)

Shelley MD. Surgery versus radiotherapy for muscle invasive bladder cancer. Cochrane Database of Systematic Reviews. 2001 Issue 4

Lymphadenectomy in Bladder Cancer

- Skinner/Stein: Dissection to include common, presacral, and distal para caval and para aortic nodes
- N1 outcome nearly as good as N0; N3 poor
Survival with Positive Nodes

- 150 N+, M0 patients; 108 without prior CRx
- Median N+ nodes: 2; 12 on average removed
- 70% received adjuvant chemotherapy (P<.01)
- 5 yr OS: 30.9%, DSS: 45.5% and RFS: 29.7%
- <25% Density: OS: 37.3% v 18.7%;
 RFS: 38.1% v. 10.6% for >25% (P<.02)

Kassouf W: J Urol. 2006, 176:53-7. (MD Anderson)

Skinner Cystectomy: 1971-2001

- 1,359 patients median age 67 (47-78)
- Operative Mortality: 2% (27 patients)
- Overall survival 10 yrs for T2: 47%
- Recurrence free survival, T2: 72%

J Urol. 2006;175:886-9

Limited Node Dissection: Cleveland Clinic Experience

- 385 pts, mean age 62 (31-84) with negative cystectomy margins, 1987-2000
- Obturator and external iliac nodes only
- 12 (2-32) nodes removed
- 45 mo median follow; no neo RT or CRx
- 12% (45) had positive nodes: only 9% overall and recurrence free survival at 5 yr

Dhar NB: BJU Int. 2006 Sep 6; E pub ahead of print

Delay in Cystectomy: Keep it Less Than 12 Weeks

- 13 papers, only 3 (23%) failed to show worse prognosis with delay in surgery
- Increase in stage and/or mortality found in 10 papers
- Consensus: cystectomy should be accomplished in less than 12 weeks from the diagnosis of muscle invasive disease

Fahmy NM: Eur Urol. 2006 Jun 13. Epub ahead of print

- Bladder cancer is more common than generally appreciated
- Multiple models are available to test novel treatments
- Translational research is facilitated by the propensity for bladder cancer to recur and the ability to treat and follow bladder cancer transurethrally
- Bladder cancer is responsive to many types of treatment

- Early detection and effective treatment appear to be lowering the mortality of bladder cancer
- Low risk (solitary Ta, G1) patients are best treated with a single instillation of chemo post TUR
- Intermediate risk patients can be treated with chemotherapy (immediate) or BCG
- BCG is never given immediately post op!
- High risk (G3, T1, or CIS) patients are best treated with BCG

- BCG provides superior protection from tumor recurrence
- While BCG is highly effective, it has significant and even life-threatening toxicity, and 50% or more of patients eventually fail treatment.
- Side effects of BCG can be reduced with careful catheterization, dose reduction (x3) and delay
- New, less toxic, more effective bladder cancer treatments are needed

- Patients failing BCG with muscle invasive disease/late cystectomy patients have reduced survival.
- Immediate cystectomy for G3,T1: 45% unsuspected T2 or greater disease.
- Cystectomy for T2 or greater: 45% 5 yr surv.
- BCG for G3, T1: 12% delayed progression.
- Repeat resection of T2 disease: 35% T1 or T0; Cystectomy for these: 65% survival, compared with 82% survival for noncystectomy

for your attention

BCGOncology.com

Combination Vitamins (Oncovite) in Bladder Cancer

- 65 patients post bladder tumor resection randomized to RDA vitamins vs high dose:
 - 40,000 IU Vitamin A
 - 100mg Vitamin B6
 - 2,000mg Vitamin C
 - 400 IU Vitamin E plus 90 mg Zinc
- Tumor recurrence reduced from 91% RDA to 41% at 5 years with Oncovite